Calibration of Finite Element Model of Titanium Laser Welding by Fractional Factorial Design
نویسندگان
چکیده
This paper focuses on the calibration of heat source parameters to reproduce temperatures and distortions in welded joints. Specifically, proposed methodology, which combines Finite Element Method Design Experiments, is applied calibrate a T-joint dissimilar titanium laser welding process. The thermal problem addressed using 3D transient model with Conical Gaussian flux, mechanical tackled elastic-plastic model. A Fractional-Factorial performed define set thermo-mechanical uncoupled models. Finally, optimal parameter combinations that replicate experimental data are identified. methodology allows automation replaces traditional trial error process, frequently does not provide good results, an exhausting task requires dubious amount time.
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولFinite element simulation of laser spot welding
The present work reports on a two-dimensional axisymmetric nite element analysis of heat ow during laser spot welding, taking into account the temperature dependence of the physical properties and latent heat of transformations. An analysis based on conduction heat transfer alone, but using the ‘double ellipsoidal’ representation of the laser beam, seems to be suf cient to estimate the tra...
متن کاملSimulation of effective parameters on low-carbon steel laser welding process using finite element method
In this paper, laser beam welding of a rectangular piece of steel was simulated using Fluent software. Physical properties of analytical field was constant and its changes with temperature was ignored. In the present work, effect of tool speed and laser power on temperature distribution of workpiece surface and different deeps in the plane of symmetry and also maximum of temperature and depth o...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Simulation of effective parameters on low-carbon steel laser welding process using finite element method
In this paper, laser beam welding of a rectangular piece of steel was simulated using Fluent software. Physical properties of analytical field was constant and its changes with temperature was ignored. In the present work, effect of tool speed and laser power on temperature distribution of workpiece surface and different deeps in the plane of symmetry and also maximum of temperature and depth o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of manufacturing and materials processing
سال: 2022
ISSN: ['2504-4494']
DOI: https://doi.org/10.3390/jmmp6060130